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ABSTRACT: Promising new opportunities to apply artificial intelligence (AI) to the Earth and 
environmental sciences are identified, informed by an overview of current efforts in the com-
munity. Community input was collected at the first National Oceanic and Atmospheric Adminis-
tration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations 
and Numerical Weather Prediction” held in April 2019. This workshop brought together over 
400 scientists, program managers, and leaders from the public, academic, and private sectors 
in order to enable experts involved in the development and adaptation of AI tools and applica-
tions to meet and exchange experiences with NOAA experts. Paths are described to actualize 
the potential of AI to better exploit the massive volumes of environmental data from satellite 
and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and 
environmental science applications. The main lessons communicated from community input via 
active workshop discussions and polling are reported. Finally, recommendations are presented 
for both scientists and decision-makers to address some of the challenges facing the adoption of 
AI across all Earth science.
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T he Earth and environmental sciences (collectively Earth science in what follows) stand 
to benefit from leveraging rapid advances in artificial intelligence (AI) from diverse 
applied science fields due to the combination of fast paced increases in data availability 

and computational capabilities. Leveraging algorithms used in other fields—what might be 
called meta-transfer learning—is accelerating the use of AI for environmental data and Earth 
system applications. We summarize here the main areas where significant progress has been 
made recently in the science of numerical weather prediction, including forecasting extreme 
weather events, and in exploiting satellite data. We then present a few potential directions that 
AI applications in Earth science may take in the future. We extend and update the perspective 
of Boukabara et al. (2019b) to include current activities, and expected future trends, based on 
presentations and discussion from the first National Oceanic and Atmospheric Administration 
(NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and 
Numerical Weather Prediction” held in April 2019 in College Park, Maryland.1 While the 
overall perspective of this combined review and meeting summary focuses on addressing 
NOAA’s mission, the science has wide ranging relevance and 
applications. For reference, a number of the AI techniques and 
their interrelationships are summarized in Fig. 1.

NOAA identified AI as a strategic opportunity for the overall 
enhancement of NOAA’s mission of science, services, and envi-
ronmental data stewardship.2 In particular, the NOAA Artificial 
Intelligence Strategy3 (issued February 2020) identified AI as a 
strong candidate to allow NOAA to address the “Big Data” chal-
lenge to collect, archive, and make useful the enormous data 
streams available now and in the near future and to help NOAA 
achieve its mission objectives and improve its performance.4 
NOAA has therefore begun reaching out to partners, experts, and practitioners of AI who have 
interests in weather and climate prediction, many of whom participated in the first NOAA AI 
workshop. A summary of key ideas gathered from community input is presented to address 
the latest advances, major challenges, and potential applications that can best serve the NOAA 
mission. The overall layout of this paper follows the approximate structure of the workshop 
itself. In the next section, the overview session is summarized, describing current and planned 

1 www.star.nesdis.noaa.gov/star/meeting_2019AIWorkshop 

.php
2 www.noaa.gov/our-mission-and-vision
3 https://nrc.noaa.gov/LinkClick.aspx?fileticket=0I2p2 

-Gu3rA%3D
4 The adoption of AI is also an important strate-

gic objective in the National Weather Service 
2019–22 Strategic Plan. Details at www.weather 

.gov/news/192203-strategic-plan.
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activities using AI for satel-
lite Earth observations and 
numerical weather predic-
tion (NWP), including con-
tributions from NOAA and 
its partners from academia 
(e.g., NCAR), the private 
sector (e.g., Google, NVIDIA, 
IBM), and international col-
laborators (e.g., ECMWF). 
Then, in the next section 
similarities between AI and 
conventional/physically-
based approaches are dis-
cussed. Subsequent sections 
are structured to show the 
relevance of AI at each step 
of the “value chain” that 
exploits observations from data ingest to decision-making (Fig. 2). 

Motivations for considering AI for satellite Earth observations and NWP. Two of the main 
challenges in NWP are 1) to take advantage of the ever-increasing volume of environmental 
data collected from satellite and other sources, and 2) to satisfy the increasing societal reli-
ance on forecasts with continually improving accuracy and reliability, which in turn implies 
a need for increased temporal and spatial resolutions in the underlying numerical forecast 
models. Boukabara et al. (2019a) noted the growing potential for AI in weather prediction. 
Significant research advances have already been made in the application of AI to different 
areas of meteorology and oceanography (Haupt et al. 2008; Hsieh 2009; Krasnopolsky 2013), 
ranging from remote sensing (Ball et al. 2017) to severe weather prediction (McGovern et al. 
2017). However, until recently, far fewer AI applications were developed to operationally 
exploit environmental satellite data, or to enhance other operational activities such as NWP, 
data assimilation, nowcasting, forecasting, and extreme weather prediction. AI is increas-
ingly being considered for these applications, with promising results. However, as outlined 
in the section “Similarities between AI and conventional/physically based approaches,” the 
inverse methods conventionally used for NWP, particularly the methods used in the field 
of data assimilation, already share many similarities with machine learning. The increase 
of data volume comes from higher-resolution satellites and sensors, from a growing list 
of new sensors (traditional as well as SmallSats and CubeSats; Stephens et al. 2020), and 
from an explosion of new observing systems that are beneficial byproducts of the Internet 
of Things (IoT; e.g., Madaus and Mass 2017) and unmanned systems. These data sources 
should help provide more accurate and detailed forecasts but their exploitation is expected 
to be a major challenge to any future computing infrastructure, not least in the area of data 
transfer and storage. AI can provide part of the solution, for example as described in the 
subsection “Fast and accurate ML model physics” of section “Highlights of AI activities in 
environmental numerical modeling.” In this case, although ML training requires substantial 
computations, these costs are insignificant compared to the savings from the speed-up of 
the resulting ML model implemented within an operational NWP model.

It is worth noting that the upcoming exascale computing capability, expected in the near 
future, which will undoubtedly increase our ability to run NWP models at higher resolu-
tions and assimilate more data, will come at a high cost of (and limitation due to) energy 

Fig. 1. A Venn diagram showing the interrelationships of several popular 
subdisciplines of AI. Credit: David John Gagne and Amy McGovern.
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consumption, and with the potential of adverse environmental impacts. It is therefore impera-
tive that as a community of Earth scientists, we look at innovative software solutions along 
with, or in combination with hardware enhancements. According to Hall (2019), effective 
use of graphics processing units (GPUs) is needed in order to keep up with Moore’s law and 
permit NWP models to run faster and at higher resolution on modern supercomputers. In this 
regard, Williams (2019) discussed a collaboration between IBM and NCAR that accelerated 
the community Model for Prediction Across Scales (MPAS) using GPUs, paving the way to 
global, hourly-updating, convection-allowing NWP.

Workforce, training, collaboration, and outreach. A diverse community of experts 
participated in the NOAA AI workshop, representing a wide range of experience with AI 
(see participants’ affiliation in Table 1). Using AI in Earth science is new for many, but there 
already exists a core group of researchers with expertise in this area. An informal survey con-
ducted by one of the authors 
(P. Tissot) indicated that while 
about 50% are just coming 
to AI within the last 2 years, 
around a third of the audience 
has already been using AI 
for Earth science for over 10 
years. Many projects focused 
on leveraging the efficien-
cy and the skill enhance-
ment that AI could bring to 
the NOAA mission, while 
some individual projects 
have already been incorpo-
rated into NOAA systems (e.g., 
Krasnopolsky et al. 1999). 
Still others have already been 
implemented by the private 
sector, thereby proving their 
feasibility.

The NOAA AI strategy em-
phasizes partnerships, out-
reach, and workforce training 
as essential ways to allow 
rapid progress in the infusion 
of AI in our systems. For these 
reasons, the workshop in-
cluded three tutorial sessions, 
a participant real-time survey, 
and two interactive panels. 
The tutorial sessions pro-
vided hands on training with 
actual AI tools, techniques, 
and coding scripts. The panel 
discussions entitled: “How 
can scientists and engineers 
embrace AI technology to 

Fig. 2. Information from (top) Earth observations and remote sensing 
flows in the value chain that exploits these observations thru data assimi-
lation, environmental numerical model, extreme weather monitoring and 
prediction, and (bottom) postprocessing of forecasts, and then onward 
to other applications and products across the public and private sectors 
that use environmental intelligence for decision making. The five colored 
blocks and large-type labels correspond to sections in this paper and the 
small-type entries correspond to topics related to the different sections.
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enhance their work?” and “Where do we go from here?”, as well as survey results, are sum-
marized in the section “Emerging trends in AI with potential benefits for Earth observations 
and NWP” and in the section “Main conclusions and challenges identified,” with relevant 
concepts integrated into the remainder of the text.

General overview of satellite Earth observations and NWP AI activities
Applying AI to Earth science has a rich and varied history across government, academia, and 
the private sector. The AMS AI Committee5 has a history of more than 25 years of organizing AI 
efforts within the weather community. Enormous progress using AI in meteorological applica-
tions has been presented at AMS conferences, particularly in the last 5 years (Tissot 2019). 
NOAA has been using AI for a variety of Earth observations and satellite applications, includ-
ing the use of neural networks for NWP model parameterization (Krasnopolsky et al. 2010) 
and using deep learning to infer missing data (Boukabara et al. 2019a). NCAR, a federally 
funded research and development center, has a long history of 
developing AI techniques for weather applications. Haupt et al. 
(2019) highlighted the Dynamic Integrated Forecast (DICast) 
system, a 20-year effort at NCAR that forms the “weather 
engine” of many applications, as well as more recent efforts to 
improve wildfire prediction with machine learning (ML). At The 
Weather Company, an IBM Business (TWC/IBM), AI has been used for years in numerous ways 
from improving observations to creating personalized forecasts for end-users (Williams et al. 
2016; Williams 2019). Geer (2019) summarized opportunities for AI in NWP being explored 
at ECMWF. These include replacing numerical model parameterizations with ML models and 
using AI for data monitoring and for augmenting data assimilation. Hall (2019) demonstrated 
examples of using AI for applications ranging from sunspot detection, automated detection 
of large-scale weather phenomena such as tropical cyclones, and parameterization. Google’s 
Alphabet AI has recently added a focus on AI for weather (Hickey 2019) and is working to 
make large Earth science datasets available to the general public and researchers.

Similarities between AI and conventional/physically based approaches
AI subdisciplines such as deep learning use mathematical methods that are closely related 
to data assimilation (DA), statistical modeling, and data fusion methods already used by 
forecasters and Earth science researchers. These methods have the common foundation 
of being essentially based on optimal estimation theory (Geer 2019, 2021). For example, 

Table 1. Counts for workshop and WebEx (italicized) components and participation in various 
categories. Note that affiliation counts are the numbers of unique organizations identified by the 
individual attendees.

Category Counts Category Counts

Components Technical sessions 6 Presentations 42

Poster sessions 2 Posters 51

Panels 3 Panelists 17

Tutorials 3

Attendees Registered 444 WebEx 310

Foreign nationals 75 Tutorial attendees 90

Affiliations Federal sector (onsite) 10 Federal sector (WebEx) ~8

Academic sector (onsite) 25 Academic sector (WebEx) ~20

Private sector (onsite) 15 Private sector (WebEx) ~30

Countries (WebEx) 11

5 www.ametsoc.org/ index.cfm/stac /committees 

/committee-on-artificial-intelligence-applications-to 

-environmental-science/
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Hsieh and Tang (1998) showed close similarities between neural networks (NNs) and varia-
tional DA. However, there are differences in how the techniques are currently applied. A key 
characteristic of DA is the acknowledgment of the presence of dynamics, which is typically 
realized via the use of a numerical model, and cycling to follow a “true state” observed by 
sparse and uncertain observations. The paramount aim of DA is to estimate this true state. 
In contrast, typically ML uses a fixed set of inputs and outputs to train a model. However, a 
number of recent physical science ML approaches have employed dynamics as a constraint 
(e.g., Beucler et al. 2019; Jiang et al. 2020). The input–output pairs in ML (often referred to 
as “features” and “labels”) are analogous to the background state and the observations in 
data assimilation. ML approaches usually ignore input and output errors and the aim is to 
learn the parameters of a model. In contrast, when using DA for weather forecasting, model 
errors are usually ignored in practice (with some important exceptions; e.g., Fisher et al. 2005; 
Lindskog et al. 2009; Ngodock et al. 2017), while the errors in the input (the background 
state) and in the output (the observations) are carefully estimated. This difference reflects the 
different nature of problems that these methods have typically been used to address.

Table 2 highlights many of the similarities between ML and DA. Both typically optimize a 
cost function based on the misfit between the model and the observations. Regularization is an 
important element of high-dimensional nonlinear optimization. Regularization is the process of 
adding information in order to solve ill-posed problems and prevent overfitting. As with general 
nonlinear optimization, ML and DA both often apply regularization via a term in the loss/cost 
function. Ensemble averaging is another tool used. DA also frequently uses ensembles of short-
term forecasts in order to estimate the temporally varying “errors of the day”—incorporating 
this information into a dynamically weighted regularization term via the background error 
covariance matrix. Additionally, both ML and DA have attempted to reduce model bias and 
variability in solutions by averaging over multiple realizations of a model (for DA, this is called 
a multimodel ensemble). A gradient descent method is often used to find the most accurate 
model or state. As examples, to estimate the gradient, both the technique of back propagation 
(used in NNs) and the adjoint method (used in 4D-Var; Bannister 2017) apply the chain rule in 
the reverse direction, starting from the cost function and ending with the linear sensitivity of 
the cost function to the network weights or state space variables, respectively.

DA methods are not limited to estimating a state; they can also simultaneously estimate pa-
rameters of the model. These techniques, including parameter estimation and weak-constraint 

Table 2. Comparison between typical machine learning (e.g., a deep neural network in TensorFlow) and data assimilation, 
which underpins most global weather forecasting. To highlight the similarities, NN concepts have been written in a linear 
algebra style close to typical DA notation. Superscript T denotes the transpose operator, bold lowercase letters are vectors 
and bold uppercase letters are matrices. Adapted from Geer (2019).

Machine learning Data assimilation

Concept Notation or example Concept Notation or example

Labels y Observations yo

Features x State x
Neural network  
or other learned models

y ̓ = W(x) Physical forward model y = H(x)

Objective or loss  
function

J = (y – y )̓T(y – y )̓ + Jw Cost function J = [yo  – H(x)]TR–1[yo –  H(x)] + Jb

Network weights (w)  
regularization

Jw  = wTw Background state (xb) term Jb = (x – xb)T B–1(x – xb)

Error covariance matrices for  
observations and background state

R, B

Iterative gradient descent  
to find network weights w

E.g., stochastic gradient descent;  
gradient computed with back propagation

For variational DA: Iterative gradient  
descent to find most probable state x

E.g., conjugate gradient method;  
gradient computed with adjoint model
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DA, have very close links with ML. Abarbanel et al. (2018) showed a mathematical equivalence 
between deep learning and DA for model parameter estimation, and extended this connection 
further to define the concept of “deepest learning.” Bocquet et al. (2019) used DA itself as an 
ML tool to infer an ordinary differential equations (ODEs) representation of model dynamics 
from observations.

From the other direction, ML can become much closer to typical DA. ML optimization may 
be limited to an initial training phase, or it may be applied progressively over time as new 
features and labels are added to the training set. Pathak et al. (2018a) have demonstrated 
cycled NNs in which the output of one training cycle is used as input to the next, which 
comes close to the cycling used in typical DA. Bocquet et al. (2019) highlighted the notion 
that the residual deep learning architectures of NNs can roughly be interpreted as dynamical 
systems (e.g., Weinan 2017; Chang et al. 2018), and further noted that Wang and Lin (1998) 
and Fablet et al. (2018) showed the architecture of the NN can follow that of an integration 
scheme.

DA and ML each offer unique advantages, suggesting possible synergies. Hsieh and Tang 
(1998) suggested the potential of a new class of hybrid neural–dynamical models. More re-
cently, efforts such as Pathak et al. (2018b) have explored the possibility of creating hybrid 
“data assisted” dynamical models to correct systematic errors that may be present in the 
dynamical model. Brajard et al. (2020) developed an alternating strategy between ML and 
DA in order to take advantage of the state estimation of DA to fill in sparse observations, thus 
providing a full-field estimate for training the ML method. Bocquet et al. (2020) unified the 
DA and ML approaches from a Bayesian perspective using expectation–maximization and 
coordinate descents. In doing so, the state trajectory and model error statistics are estimated  
simultaneously.

In summary, AI and traditional approaches based on optimal estimation share many 
mathematical similarities. The major difference is that a regular cycled optimization process 
is central to DA, while this is not generally used when training a ML model.

Highlights of AI activities in satellite Earth observations and remote sensing
Activities applying AI to remote satellite data range from detecting flood and ice from synthetic-
aperture radar (SAR) images (e.g., Wang et al. 2017) to estimating tropical cyclone intensity 
from satellite microwave imagery (Wimmers et al. 2019) to a variety of uses of AI techniques 
in satellite data calibration, bias correction, and remote sensing of atmospheric and surface 
parameters (Reichstein et al. 2019). Preparing the data (e.g., labeling) for AI exploitation is a 
notable challenge in some applications. This critical but often overlooked step has attracted 
some recent attention (e.g., Bonfanti et al. 2018; Lee et al. 2019; Prabhat et al. 2020) and 
should be an emphasis of future efforts by prediction centers. This will not only provide more 
readily available datasets for AI exploitation, it should also in principle allow more creative 
ways to exploit satellite data.

The products generated by AI approaches have similar characteristics (i.e., accuracy, lev-
els of misfit to observations, spatial features coherence, and interparameters correlations) to 
those generated by traditional physical approaches. For example, Boukabara et al. (2019a) 
showed that the total precipitable water vapor (TPW) retrieved from microwave brightness 
temperatures by AI captures all the main features of the NWP analyses. The most strik-
ing advantage of many AI approaches is efficiency. For example, while it takes about 2 h 
to process a full day of the Advanced Technology Microwave Sounder (ATMS) data with 
traditional iterative-based systems, the Multi-Instrument Inversion and Data Assimilation 
Preprocessing System–AI (MIIDAPS-AI) approach (excluding I/O and training time) requires 
only 5 s of CPU time.
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Highlights of activities to leverage AI in data assimilation
AI has the potential to benefit DA in all stages of the analysis–forecast cycle. The process steps 
in a typical DA cycle include producing a forecast with a large-scale nonlinear numerical 
model, preprocessing vast quantities of observational data, subsetting or aggregating obser-
vational data, correcting systematic biases in observations, computing linear approximations 
of the state for use by minimization algorithms, performing a statistical analysis combining 
forecast and observations, rebalancing the analysis to ensure the forecast model numerical 
time integrations are stable, and correcting systematic biases in the forecast.

A well-recognized opportunity for ML within the DA cycle is the replacement of the ob-
servation operator. Verrelst et al. (2015) and Rivera et al. (2015) applied ML to estimate the 
forward model (i.e., the radiative transfer observation operator). These ML models provided 
greater computational efficiency while maintaining accuracy and flexibility for extrapola-
tion. Moreover, where the physical equations of the forward model are unknown or dif-
ficult to implement, the ML observation operator can be trained using the observations 
and a DA analysis. An example is the training of an NN retrieval between Soil Moisture 
and Ocean Salinity (SMOS) radiances and soil moisture taken directly from NWP analyses 
(Rodríguez-Fernández et al. 2019). These retrievals were then successfully assimilated, and 
this approach eliminated the need for separate soil moisture observations in the training, and 
it automatically corrected any biases between the radiances and the NWP system.

Cintra and de Campos Velho (2018) demonstrated an emulation of the entire DA analy-
sis by implementing a multilayer perceptron (MLP) model of the local ensemble transform 
Kalman filter (LETKF; Hunt et al. 2007) applied to the SPEEDY atmospheric model. The MLP 
and LETKF analyses are very similar—for example, surface pressure differences were within 
a ±5-hPa bound. However, there was a significant reduction in computational cost, so this 
approach could provide benefits to applications such as reanalysis, where the DA analysis is 
computed many times, and operational forecasting, which is typically tightly scheduled on 
limited computing resources.

Highlights of AI activities in environmental numerical modeling
AI applications targeting numerical modeling focus on either enhancing the numerical 
models, such as by replacing subgrid-scale parameterizations, or on replacing the numeri-
cal models altogether. In some cases, numerical models may be an essential component 
for training a ML-based model, while in others the ML model may be driven by observa-
tional data alone.

Fast and accurate ML model physics. Applications addressing model physics consist of 
three different but closely related types. The first is fast emulation or “surrogate modeling” 
of existing model parameterizations, which applies an emulation technique for accelerating 
calculation of previously developed parameterizations based on approximate description of 
underlying physical processes (e.g., radiation parameterizations; Krasnopolsky et al. 2010). 
The second is enhanced parameterization, based on data simulated by high-resolution mod-
els in situations when underlying physical processes are very complicated and not very well 
understood (e.g., Krasnopolsky et al. 2013; Brenowitz and Bretherton 2018). The third case 
involves data-driven parameterizations, which are new empirical parameterizations based 
on observed data (e.g., Haupt et al. 2019). The great flexibility of ML tools also allows a com-
bination of these three approaches, and they can also be employed to speed up calculations 
within a partly physical framework (e.g., Chevallier et al. 2000).

Fast emulation oF existing parameterizations. ML may be used to provide a functional 
approximation of a model parameterization with relatively small approximation error 
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(Chevallier et al. 1998; Veerman et al. 2020). With sufficient training data, this can produce 
a relatively smooth interpolation within the training set domain. When an ML emulation is 
developed, in addition to the criterion of small approximation errors there are several ad-
ditional criteria that must be met (Krasnopolsky 2013), the most important being to achieve 
high performance within the host NWP model.

Fast emulations of existing model physics parameterizations are usually developed 
for complex parameterizations that are computational bottlenecks, such as atmospheric 
radiation parameterizations and the planetary boundary layer (e.g., Wang et al. 2019). 
Krasnopolsky (2019) demonstrated that a 0.1 K day−1 RMS accuracy can be obtained for 
varied individual instantaneous profiles with shallow NN emulators with O(100) neurons. 
Even in moderate resolution climate models, the calculation of the atmospheric radiation can 
consume more than 50% of the computational load. ML emulations of atmospheric radiation 
parameterizations accelerate calculation of the long wave radiation about 16 times and the 
shortwave radiation about 60 times (Krasnopolsky 2019).

enhanced parameterization by training on an advanced model. ML techniques can also be 
used not only to emulate existing physics parameterizations, but also to improve the repre-
sentation of these subgrid-scale processes. Because of the approximations made in the pa-
rameterized physics that atmospheric general circulation models (AGCMs) use, these models 
cannot accurately simulate many important finescale processes like cloudiness and convective 
precipitation (e.g., Rasch et al. 2000; Brenowitz and Bretherton 2018; Rasp et al. 2018; Chen 
et al. 2019). Cloud-resolving models (CRMs) can represent many of the phenomena that lower-
resolution global and regional models do not (i.e., higher-resolution fluid dynamic motions 
supporting updrafts and downdrafts, convective organization, mesoscale circulations, and 
stratiform and convective components that interact with each other). In this setting, the aim 
is to use ML to develop parameterizations by training on CRM data to allow the low-resolution 
models to emulate the behavior of a CRM while maintaining a low computational cost. The 
resulting emulation can be used as an enhanced, and computationally viable parameteriza-
tion in a AGCM (Krasnopolsky et al. 2013; Schneider et al. 2017; Brenowitz and Bretherton 
2018; Gentine et al. 2018; O’Gorman and Dwyer 2018; Bretherton et al. 2019; Brenowitz and 
Bretherton 2019a,b; Pal et al. 2019; Yuval and O’Gorman 2020).

data-driven parameterization by training on observational data. In many cases, such as in 
Monin–Obukhov similarity theory (MOST; Monin and Obukhov 1954), the original theoretical 
formulations for model parameterizations were based on measured data. Traditional surface 
layer schemes are based on MOST and predict surface fluxes of temperature, momentum, and 
moisture based on physical relationships between wind speed, air and ground temperature, 
and air and ground specific humidity (Jiménez et al. 2012). Empirical coefficients within 
these relationships have traditionally been derived from experimental results; however, 
there is significant variation between the empirical coefficients determined by different 
field programs. Parameterizations can also be built directly from observational data. For 
example, researchers at NCAR are using data from field sites (Scoville, Idaho, and Cabauw, 
The Netherlands) to build new land surface layer models using neural networks and random 
forests (Haupt et al. 2019; Gagne et al. 2019a). A particular hurdle for boundary layer emula-
tion is that some NWP models would require it to be incorporated within an implicit solver 
because the atmospheric and surface boundary layers are so tightly coupled.

ML predictive models. Some recent studies have taken a more extreme approach by com-
pletely replacing the dynamical model with ML-based surrogates. Scher (2018) emulated the 
dynamics of a low-resolution AGCM using a deep learning NN that can predict the complete 
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model state several time steps ahead, and through cycling can produce a climate similar to the 
reference AGCM without explicitly imposing conservation properties. Dueben and Bauer (2018) 
used a toy model for global weather predictions to identify challenges and fundamental 
design choices for a forecast system based on neural networks. James et al. (2018) and 
O’Donncha et al. (2018) applied ML to emulate a numerical wave model for a significant speed-
up of approximately 1,000-fold compared to the source numerical model. Weyn et al. (2019, 
2020) applied a convolutional neural network architecture to a cubed-sphere representation 
of atmospheric reanalysis fields and produced realistic weather forecasts at lead times of sev-
eral weeks and longer. Keller and Evans (2019a,b) applied ML (random forest regression) to 
replace the gas-phase chemistry in an atmospheric chemistry transport model, demonstrating 
best results by predicting the change in concentration for long-lived species and the concen-
tration itself at the end of the time step for short-lived species. Other closely related studies 
have used “analog” methods to build a statistical representation of the numerical model that 
can be sampled to make new forecasts or forecast distributions (Hamill and Whitaker 2006; 
Delle Monache et al. 2013).

Activities to leverage AI in extreme weather monitoring and prediction
Extreme weather events can have severe impacts on life and property. From nowcasting 
(forecasts up to about 2 h) tornado and lightning activity, to predicting longer-horizon events 
like heat waves and periods of prolonged precipitation, the ability to accurately predict the 
likelihood of extreme events can help mitigate their damage. Multiple techniques from more 
traditional linear regression to random forests and modern NN approaches have been demon-
strated to enhance the skill of existing methods of nowcasting and predicting extreme weather. 
Stevenson et al. (2019) provide a historical overview of how statistical techniques were used by 
the National Hurricane Center (NHC) in the 1950s. Since that time, AI techniques such as regres-
sion, random forests, and neural networks have improved probabilistic hazard guidance from 
multimodel ensembles and forecasts of rapid intensification. Eslami et al. (2019) continued this 
theme using a deep learning ensemble approach with a regressive deep convolutional neural 
network to predict hurricane intensity, which performed better than the individual ensemble 
members and better than existing NHC forecasts. McGovern (2019) and Lagerquist et al. (2020) 
showed that ML can be used to improve forecasts of extreme weather, including hail 24–48 h in 
advance, as well as nowcasting for tornadoes. Lakshmanan et al. (2019) used Global Lightning 
Mapper (GLM) data to develop a ML-based nowcasting application. Sønderby et al. (2020) 
use a NN to extrapolate radar and satellite data to produce probabilistic precipitation maps 
out to several hours. Other research in extreme weather has focused on longer-term predic-
tion horizons. Fan et al. (2019) applied a NN-based ensemble averaging approach to improve 
forecasts of week-3–4 precipitation and 2-m air temperature produced by NOAA’s Climate 
Forecast System (CFS). In this work, the NN corrects erroneous patterns in the model output 
and nearly doubles the skill compared to multiple linear regression. While these studies do 
not constitute a complete summary of work in this area, they highlight ongoing efforts and 
opportunities for future advancement.

Postprocessing of forecasts
Statisticians recognized the value of postprocessing NWP forecasts in the 1970s and developed 
the Model Output Statistics (MOS) technique (Glahn and Lowry 1972). As a natural extension 
to traditional MOS techniques, AI has been found to be quite effective at model postprocessing. 
NCAR began implementing DICast system to correct and blend multiple NWP model forecasts 
(Myers et al. 2011) in the late 1990s and transitioned it to a gridded system in the following 
decade (Haupt et al. 2019). Since then, a plethora of techniques have developed for model 
postprocessing. Regime-dependent postprocessing is also becoming important for improving 
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forecasts. Greybush et al. (2008) showed that using empirical orthogonal functions could 
improve temperature forecasts. McCandless et al. (2016) demonstrated the use of regimes 
for solar power forecasting.

Alternative AI methods have been developed for probabilistic forecasting based 
on numerical model output. An example is the analog ensemble (AnEn) technique 
(Eckel and Delle Monache 2016), which examines a library of historical forecasts to identify 
those cases that best match present conditions. Combined with the verifying observations, 
this provides an empirical probability density function (pdf) that can be used to quantify 
the uncertainty of the forecast. The mean of that pdf can also help to reduce biases in the 
deterministic forecast (Delle Monache et al. 2013). This work leverages a single deterministic 
model integration to produce calibrated probabilistic information. Hamill and Whitaker (2006) 
and Hamill et al. (2015) used a similar analog approach to calibrate ensembles of precipita-
tion forecasts.

The NN-based bias correction of wave forecasts by Campos et al. (2018, 2019) showed signifi-
cant benefits, particularly at time horizons where errors begin to grow nonlinearly (e.g., beyond 
5–7 days). Such forecast bias correction, applied to forecast models with greater nonlinear error 
growth on shorter time scales, has the potential to be integrated in the forecast component of 
the DA analysis cycle. Bolton and Zanna (2019) applied deep learning to combine observations 
and model data to predict unresolved processes and flow fields in a simulation study.

TWC/IBM has developed AI methods for creating probabilistic forecasts of meteorological 
variables and calibrated ensembles of equally likely scenarios intended to support decision 
services for various industries (Williams 2019). Some examples include electrical utilities 
mobilizing crews in preparation for potential outages and energy traders anticipating fluc-
tuations in demand. ML has been used to postprocess NWP output to predict severe events, 
such as hail (Gagne et al. 2017) and tornadoes (McGovern et al. 2017). Haupt et al. (2019) and 
Gagne (2019) showed how application of convolutional neural networks to NWP data cannot 
only identify storms that are most likely to develop severe hail, but could also identify the 
features of those storms that make them hail producing (Gagne et al. 2019b). Additionally, 
the NHC has implemented multiple ML methods on model output to improve forecasts of hur-
ricane intensity (Stevenson et al. 2019).

Emerging trends in AI with potential benefits for Earth observations and NWP
Physical scientists often view AI methods as a “black box” that gives little insight into the 
actual underlying properties of the system. Greater understanding of how these methods 
behave is needed before AI methods can be readily adopted in an operational forecast-
ing environment. Efforts are underway to develop explainable AI (McGovern et al. 2019; 
Samek et al. 2017; Toms et al. 2020) and physics-guided ML (Ding 2018; Karpatne et al. 2018). 
McGovern et al. (2019) and Toms et al. (2020) demonstrated a variety of AI interpretation 
methods for techniques ranging from traditional ML (including decision trees and regression) 
to deep learning. Ghahramani (2015) states that ML must be able to represent and manipulate 
uncertainty about models and predictions. Probabilistic modeling and reasoning (Pearl 1988) 
is effective at training models that incorporate uncertainty estimation/quantification. Explain-
able AI is in its infancy, particularly within Earth science, and will be an important emerging 
field as AI methods continue to grow in popularity.

Explicit inclusion of physics constraints into AI has the potential to improve the physical 
consistency, performance, interpretability, transparency, and explainability of AI-driven 
models. This area of research is very active including many connections to explainable AI. 
Reviews and references of different methods to combine data and knowledge into ML are given 
by von Rueden et al. (2019), while Roscher et al. (2020) survey how these concepts are applied 
in science. Physical insight is often included in the design of ML models through selection of 
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features, predictors, activation functions, and topologies. However, new efforts are underway to 
explore the explicit specification of known physical constraints as part of the AI model, either 
by incorporating the output of a physical model or by including explicit physical constraints 
during training such as via a penalty term in the loss function. Implementation of such con-
straints resulted in better generalizability and physically meaningful insights when applied to 
the prediction of lake temperature profiles (Karpatne et al. 2018). To enforce conservation laws, 
ML training can also include functions that measure the discrepancy from the conservation 
laws either as a strong constraint using the method of Lagrange multipliers during the minimi-
zation or as a weak constraint included in the overall cost function (e.g., Tompson et al. 2017).

Other related methods include physics-informed generative adversarial networks (PI-GAN; 
Wu et al. 2020). PI-GANs can account for unresolved physics by learning statistics from 
precomputed training data, for example by ensuring that the climatological covariance of 
generated samples matches that of the training dataset. This provides an alternative to the 
explicit development of closures or parameterizations, such as for turbulence. Adding physics 
can reduce the requirements for large datasets (e.g., Yang et al. 2020).

Main conclusions and challenges identified
Our objectives included 1) reviewing AI-enabling technology and tools, 2) reviewing scientific 
objectives for better utilization of current and future Earth observations, 3) examining ideas 
to improve NWP skill and efficiency of environmental data processing, and 4) identifying 
innovative ways to use satellite data and other environmental data to create new products 
and services. An overarching goal is to gather information to help inform the NOAA Artificial 
Intelligence Strategy and to establish a roadmap to fully leverage AI in NOAA’s Earth sci-
ence portfolio. Benefits of AI to operational forecast systems sometimes take the form of a 
complement (e.g., by correcting tropical cyclone forecasts) and sometimes as a full alterna-
tive to heritage systems (e.g., for image correction and forward problem emulation for remote 
sensing). Because ML is particularly efficient for modeling nonlinear relationships, there is 
potential for emulating or replacing NWP parameterizations such as radiation and cumulus 
convection. AI also has potential to improve long-term data stewardship, for example by 
using natural language processing for data rescue and mining metadata to make the data 
more available and discoverable.

While some technologists believe AI will be disruptive in other industries from workplace 
roles to organizational structures (Bloomberg 2018), a survey of workshop participants agreed 
that AI would largely supplement current tools (Fig. 3). A panel of AI experts expressed broad 
concern that because AI tools are becoming easier to use, the larger NWP community may 
lose trust in AI if the application of AI is not managed well. The panel agreed that the lack 
of formal partnership and mentoring mechanisms across the sectors poses a challenge, yet 
encouraged NOAA to expand the use of cooperative research and development agreements 
(CRADAs), which allow a government agency to team with a private company or university, 
and to consider innovative mechanisms to improve collaboration, such as prize challenges. 
The panel noted that much of NOAA’s data are highly structured, making these ideal for 
AI applications. If more of NOAA’s data were made available in a cloud sandbox, if these 
data were labeled, when appropriate, and if domain scientists were available to explain nu-
ances within the data, then others across the AI community could more easily contribute to 
solving NOAA’s challenges. Finally, the panel discussed the need to take a whole-systems 
approach to AI development, so that anticipated advancements in AI will inform NOAA’s 
future requirements in related areas such as data assimilation, parameterization develop-
ment, and computing, resulting in the development of future forecast and postprocessing 
systems that combine both AI and traditional physics-based approaches, leveraging their 
relative strengths.
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There are challenges as-
sociated with greater adop-
tion of AI. Requirements 
for training multivariate 
problems can be enormous 
both in terms of training 
sets and HPC. Since deep 
learning models are unre-
liable when extrapolating 
beyond the domain covered 
by the training set, or if the 
dataset is nonstationary 
due to changing conditions 
such as those caused by 
climate change, the training 
set should be representa-
tive and comprehensive. 
The fastest progress is ex-
pected to involve working 
on smaller subproblems or 
in estimating corrections 
to existing conventional 
applications. The transi-
tion from research to op-
erations is a critical step, 
but trust in AI techniques 
is an obstacle. There is a 
knowledge gap related to 
AI in the weather, water, 
and climate workforce that 
contributes to a lack of trust. 
If scientists and forecast-
ers do not understand a 
technique, they will be less 
likely to trust it, and thus 
less likely to use it. While, 
the growing availability 
of GPUs and new software 
tools (e.g., TensorFlow and 
PyTorch) that can exploit 
GPUs has made efficient and scalable ML more accessible to Earth science researchers, 
concerns arise about the acceptance and implementation of the Python language into high-
performance computing and operational use or the availability of translation methods and/
or compatibility of the new software tools for FORTRAN [but see recent efforts in this area 
by Ott et al. (2020)].

Despite the challenges in leveraging AI for Earth science, we expect greatly expanding 
use of AI for environmental data and forecasting applications. The drive to simultaneously 
improve forecast skill (by accounting for unknown or difficult to model phenomena) and 
increase efficiency (therefore reducing cost and meeting latency requirements) will continue 
to make AI attractive to operational centers like NOAA. The promotion of AI by the U.S. 

Fig. 3. Real-time survey results from workshop participants presented as 
(a)–(d) bar plots and (e) a word cloud; N indicates sample size.
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Government6 to help the economy and society in a variety of 
applications will be a major additional strategic driver for the 
increased use of AI techniques in Earth science.
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